
Virtual Environments

A Virtual Environment is a tool to keep the dependencies required by different projects in separate places, by creating
virtual Python environments for them. It solves the “Project X depends on version 1.x but, Project Y needs 4.x”
dilemma, and keeps your global site-packages directory clean and manageable.

For example, you can work on a project which requires Django 1.10 while also maintaining a project which requires
Django 1.8.

virtualenv

virtualenv is a tool to create isolated Python environments. virtualenv creates a folder which contains all the necessary
executables to use the packages that a Python project would need.

Install virtualenv via pip:

$ pip install virtualenv

Test your installation

$ virtualenv --version

100 Chapter 5. Python Development Environments

Python Guide Documentation
Release 0.0.1

Kenneth Reitz

August 17, 2017

http://pypi.python.org/pypi/virtualenv

Python Guide Documentation, Release 0.0.1

Basic Usage

1. Create a virtual environment for a project:

$ cd my_project_folder
$ virtualenv my_project

virtualenv my_project will create a folder in the current directory which will contain the Python executable
files, and a copy of the pip library which you can use to install other packages. The name of the virtual environment
(in this case, it was my_project) can be anything; omitting the name will place the files in the current directory
instead.

This creates a copy of Python in whichever directory you ran the command in, placing it in a folder named
my_project.

You can also use the Python interpreter of your choice (like python2.7).

$ virtualenv -p /usr/bin/python2.7 my_project

or change the interpreter globally with an env variable in ~/.bashrc:

$ export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python2.7

2. To begin using the virtual environment, it needs to be activated:

$ source my_project/bin/activate

The name of the current virtual environment will now appear on the left of the prompt (e.g.
(my_project)Your-Computer:your_project UserName$) to let you know that it’s active. From
now on, any package that you install using pip will be placed in the my_project folder, isolated from the global
Python installation.

Install packages as usual, for example:

$ pip install requests

3. If you are done working in the virtual environment for the moment, you can deactivate it:

$ deactivate

This puts you back to the system’s default Python interpreter with all its installed libraries.

To delete a virtual environment, just delete its folder. (In this case, it would be rm -rf my_project.)

After a while, though, you might end up with a lot of virtual environments littered across your system, and its possible
you’ll forget their names or where they were placed.

Other Notes

Running virtualenv with the option --no-site-packages will not include the packages that are installed
globally. This can be useful for keeping the package list clean in case it needs to be accessed later. [This is the default
behavior for virtualenv 1.7 and later.]

In order to keep your environment consistent, it’s a good idea to “freeze” the current state of the environment packages.
To do this, run

$ pip freeze > requirements.txt

This will create a requirements.txt file, which contains a simple list of all the packages in the current environ-
ment, and their respective versions. You can see the list of installed packages without the requirements format using

5.2. Virtual Environments 101

Python Guide Documentation, Release 0.0.1

“pip list”. Later it will be easier for a different developer (or you, if you need to re-create the environment) to install
the same packages using the same versions:

$ pip install -r requirements.txt

This can help ensure consistency across installations, across deployments, and across developers.

Lastly, remember to exclude the virtual environment folder from source control by adding it to the ignore list.

virtualenvwrapper

virtualenvwrapper provides a set of commands which makes working with virtual environments much more pleasant.
It also places all your virtual environments in one place.

To install (make sure virtualenv is already installed):

$ pip install virtualenvwrapper
$ export WORKON_HOME=~/Envs
$ source /usr/local/bin/virtualenvwrapper.sh

(Full virtualenvwrapper install instructions.)

For Windows, you can use the virtualenvwrapper-win.

To install (make sure virtualenv is already installed):

$ pip install virtualenvwrapper-win

In Windows, the default path for WORKON_HOME is %USERPROFILE%Envs

Basic Usage

1. Create a virtual environment:

$ mkvirtualenv my_project

This creates the my_project folder inside ~/Envs.

2. Work on a virtual environment:

$ workon my_project

Alternatively, you can make a project, which creates the virtual environment, and also a project directory inside
$PROJECT_HOME, which is cd -ed into when you workon myproject.

$ mkproject myproject

virtualenvwrapper provides tab-completion on environment names. It really helps when you have a lot of environ-
ments and have trouble remembering their names.

workon also deactivates whatever environment you are currently in, so you can quickly switch between environments.

3. Deactivating is still the same:

$ deactivate

4. To delete:

$ rmvirtualenv venv

102 Chapter 5. Python Development Environments

https://virtualenvwrapper.readthedocs.io/en/latest/index.html
https://virtualenvwrapper.readthedocs.io/en/latest/install.html
https://github.com/davidmarble/virtualenvwrapper-win/

Python Guide Documentation, Release 0.0.1

Other useful commands

lsvirtualenv List all of the environments.

cdvirtualenv Navigate into the directory of the currently activated virtual environment, so you can browse its
site-packages, for example.

cdsitepackages Like the above, but directly into site-packages directory.

lssitepackages Shows contents of site-packages directory.

Full list of virtualenvwrapper commands.

virtualenv-burrito

With virtualenv-burrito, you can have a working virtualenv + virtualenvwrapper environment in a single command.

autoenv

When you cd into a directory containing a .env, autoenv automagically activates the environment.

Install it on Mac OS X using brew:

$ brew install autoenv

And on Linux:

$ git clone git://github.com/kennethreitz/autoenv.git ~/.autoenv
$ echo 'source ~/.autoenv/activate.sh' >> ~/.bashrc

Further Configuration of Pip and Virtualenv

Requiring an active virtual environment for pip

By now it should be clear that using virtual environments is a great way to keep your development environment clean
and keeping different projects’ requirements separate.

When you start working on many different projects, it can be hard to remember to activate the related virtual environ-
ment when you come back to a specific project. As a result of this, it is very easy to install packages globally while
thinking that you are actually installing the package for the virtual environment of the project. Over time this can
result in a messy global package list.

In order to make sure that you install packages to your active virtual environment when you use pip install,
consider adding the following line to your ~/.bashrc file:

export PIP_REQUIRE_VIRTUALENV=true

After saving this change and sourcing the ~/.bashrc file with source ~/.bashrc, pip will no longer let you in-
stall packages if you are not in a virtual environment. If you try to use pip install outside of a virtual environment
pip will gently remind you that an activated virtual environment is needed to install packages.

$ pip install requests
Could not find an activated virtualenv (required).

You can also do this configuration by editing your pip.conf or pip.ini file. pip.conf is used by Unix and
Mac OS X operating systems and it can be found at:

5.3. Further Configuration of Pip and Virtualenv 103

https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html
https://github.com/brainsik/virtualenv-burrito
https://github.com/kennethreitz/autoenv

Python Guide Documentation, Release 0.0.1

$HOME/.pip/pip.conf

Similarly, the pip.ini file is used by Windows operating systems and it can be found at:

%HOME%\pip\pip.ini

If you don’t have a pip.conf or pip.ini file at these locations, you can create a new file with the correct name
for your operating system.

If you already have a configuration file, just add the following line under the [global] settings to require an active
virtual environment:

require-virtualenv = true

If you did not have a configuration file, you will need to create a new one and add the following lines to this new file:

[global]
require-virtualenv = true

You will of course need to install some packages globally (usually ones that you use across different projects consis-
tently) and this can be accomplished by adding the following to your ~/.bashrc file:

gpip() {
PIP_REQUIRE_VIRTUALENV="" pip "$@"

}

After saving the changes and sourcing your ~/.bashrc file you can now install packages globally by running gpip
install. You can change the name of the function to anything you like, just keep in mind that you will have to use
that name when trying to install packages globally with pip.

Caching packages for future use

Every developer has preferred libraries and when you are working on a lot of different projects, you are bound to have
some overlap between the libraries that you use. For example, you may be using the requests library in a lot of
different projects.

It is surely unnecessary to re-download the same packages/libraries each time you start working on a new project (and
in a new virtual environment as a result). Fortunately, you can configure pip in such a way that it tries to reuse already
installed packages.

On UNIX systems, you can add the following line to your .bashrc or .bash_profile file.

export PIP_DOWNLOAD_CACHE=$HOME/.pip/cache

You can set the path to anywhere you like (as long as you have write access). After adding this line, source your
.bashrc (or .bash_profile) file and you will be all set.

Another way of doing the same configuration is via the pip.conf or pip.ini files, depending on your system. If
you are on Windows, you can add the following line to your pip.ini file under [global] settings:

download-cache = %HOME%\pip\cache

Similarly, on UNIX systems you should simply add the following line to your pip.conf file under [global]
settings:

download-cache = $HOME/.pip/cache

Even though you can use any path you like to store your cache, it is recommended that you create a new folder in the
folder where your pip.conf or pip.ini file lives. If you don’t trust yourself with all of this path voodoo, just use
the values provided here and you will be fine.

104 Chapter 5. Python Development Environments

	Getting Started with Python
	Picking an Interpreter
	Properly Installing Python
	Installing Python 3 on Mac OS X
	Installing Python 3 on Windows
	Installing Python 3 on Linux
	Installing Python 2 on Mac OS X
	Installing Python 2 on Windows
	Installing Python 2 on Linux

	Writing Great Python Code
	Structuring Your Project
	Code Style
	Reading Great Code
	Documentation
	Testing Your Code
	Logging
	Common Gotchas
	Choosing a License

	Scenario Guide for Python Applications
	Network Applications
	Web Applications & Frameworks
	HTML Scraping
	Command-line Applications
	GUI Applications
	Databases
	Networking
	Systems Administration
	Continuous Integration
	Speed
	Scientific Applications
	Image Manipulation
	Data Serialization
	XML parsing
	JSON
	Cryptography
	Machine Learning
	Interfacing with C/C++ Libraries

	Shipping Great Python Code
	Packaging Your Code
	Freezing Your Code

	Python Development Environments
	Your Development Environment
	Virtual Environments
	Further Configuration of Pip and Virtualenv

	Additional Notes
	Introduction
	The Community
	Learning Python
	Documentation
	News
	Contribute
	License
	The Guide Style Guide

